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Precursors of catastrophe in the Bak-Tang-Wiesenfeld, Manna,
and random-fiber-bundle models of failure

Srutarshi Pradhan* and Bikas K. Chakrabarti†

Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064, India
~Received 6 July 2001; published 17 December 2001!

We have studied precursors of the global failure in some self-organized critical models of sandpile@in
Bak-Tang-Wiesenfeld~BTW! and Manna models# and in the random-fiber-bundle model~RFB!. In both BTW
and Manna model, as one adds a small but fixed number of sand grains~heights! to any central site of the stable
pile, the local dynamics starts and continues for an average relaxation timet and an average number of
topplingsD spread over a radial distancej. We find that these quantities all depend on the average heighthav

of the pile and they all diverge ashav approaches the critical heighthc from below: D;(hc2hav)2d, t
;(hc2hav)2g, and j;(hc2hav)2n. Numerically, we findd.2.0,g.1.2, andn.1.0 for both BTW and
Manna model in two dimensions. In the strained RFB model, we find that the breakdown susceptibilityx
~giving the differential increment of the number of broken fibers due to increase in external load! and the
relaxation timet, both diverge as the applied load or stresss approaches the network failure thresholdsc from
below: x;(sc2s)21/2 and t;(sc2s)21/2. These self-organized dynamical models of failure, therefore,
show some definite precursors with robust power laws long before the failure point. Such well-characterized
precursors should help predicting the global failure point of the systems in advance.

DOI: 10.1103/PhysRevE.65.016113 PACS number~s!: 05.50.1q, 05.70.Ln, 05.65.1b, 05.40.2a
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I. INTRODUCTION

In a sandpile, whenever the local slope at the surface
the pile exceeds the angle of repose, avalanches take p
and the sand grains move to the neighboring sites. If
local slope of these neighboring sites increase, in turn,
yond the angle of repose, avalanches continue. Otherwise
dynamics stops until another sand grain is added to the
The system finally attains a self-organized state where e
grains, when added, get out of the system through succes
avalanches from its boundary. Models of sandpiles have b
developed to study such self-organization. Bak, Tang,
Wiesenfeld~BTW! @1,2# introduced the random height san
pile model, where height units are added randomly at
site at a constant rate and a site topples when its he
equals an integer threshold valuehth (54 for square lattice,
for example!. Whenever any site topples, the local heig
becomes zero there and the height is locally conserved
equal sharing among the nearest neighbors~four in number
for square lattice! and the neighbors get one unit of heig
added to theirs’. The boundary of the system is comple
absorbing. As more and more grains~heights! are added
slowly to the system, the average heighthav of the system
gradually increases and attains a critical heighthc ~equiva-
lent to the angle of repose of the sandpile!, beyond which the
growth of average height stops as the further addition
grains at any site causes successive avalanches or failur
all sizes. These happen due to the long-range correlat
developed and the additional grains finally get out of
system through its boundaries. The self-organized state
becomes critical as it involves power law behavior in av
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lanche size distribution and the corresponding lifetime dis
bution. Extensive numerical checkings confirmed this se
organized critical behavior in both two- and thre
dimensional sandpiles@3,4#. Later, Manna introduced@5# a
two state and stochastic version of the BTW model, wh
the threshold height has been chosen to be two (hth52). The
toppling at any site reduces the height there to zero and
toppled heights add to the height of any stocastically cho
site among the four neighboring sites of the toppled o
Here also, with constant addition of sand grains, the sys
gradually reaches again a critical state and there the
lanche size distribution and the corresponding lifetime dis
bution again follow similar scaling behavior. However, th
exponents for the Manna model seem to be different@5,6#
from those of the BTW model. A similar self-organizing dy
namics is also seen in a strained random-fiber-bundle~RFB!
model @7–12#, whereN fibers are connected in parallel t
each other and clamped between their two ends. The stre
of the individual fibers has a random distribution~white,
Gaussian or otherwise!. Under a loadF, a fraction of the
fibers fail immediately whose strengths are less than
stresss(5F/N). After this, the total load of the bundle re
distributes globally as the stress is transferred from bro
fibers to the remaining unbroken ones. This redistribut
causes secondary failures that, in general, causes further
ures and so on. After some typical relaxation timet ~depen-
dent ons), the system ultimately becomes stable if the a
plied stresss is less than a critical valuesc , beyond which
all the fibers break and the network fails completely. A
though the RFB model is not a self-organized critical one~as
the failure state ats.sc is not critical!, it has some self-
organizing dynamics~stress redistribution fors<sc) similar
to the earlier ones and is very simple to tackle analytica
The studies of these self-organizing model systems and t
scaling behavior have been extremely useful in analyzing
©2001 The American Physical Society13-1
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statistics of fracture and breakdown in real materials, incl
ing in earthquakes@4,13,14#.

An obvious question arises: Are there any precursors
prior indications that can tell how far a~slowly! growing
sandpile or a gradually strained fiber bundle is away from
global failure point? The study of precursors in se
organized systems was initiated by Acharyya and Cha
barti @15#. Here, the global failure is identified as the syste
spanning avalanche occurring athav5hc . They tried to
study the response of BTW model to pulsed addition
grains ~heights! in two- and three-dimensional sandpile
where ‘‘pulse’’ means a fixed number of grains, added at a
site to trigger the dynamics locally in time and space. Add
a pulse of heights at any site of a stable pile~where toppling
had stopped!, they measured the response of the system
terms of the number of affected or toppled sites (D) and the
corresponding response or relaxation time (t) at various av-
erage heights (hav) of the system. They observed that bothD
andt diverge ashav approaches the critical heighthc . They
also estimated the exponents involved in the power laws
these divergences. However, these estimates for the expo
values were not quite accurate due to the small system s
considered and strong pulses applied. Similarly, the bre
down susceptibility@15# of the RFB model was studied b
measuring the increment in the number of broken fibers w
the increment in the stresss @16#. It was seen that this dif-
ferential increase in the number of broken fibers due to
finitesimal increase in stresss, diverges as the stresss ap-
proaches the global failure thresholdsc .

In this paper, we have studied several precursors in
models of sandpiles and random-fiber-bundle. We have s
ied the response of sandpile models~both BTW and Manna
model! to pulsed addition of sand grains~heights; for unit
time or unit pulse width!, where the applied pulse strength
negligible, so that the statistical state of the system is
perturbed significantly by the applied pulse. We have ide
fied three parameters, namely, the total number of toppli
(D), the corresponding relaxation time (t), and the correla-
tion length (j); all of which diverge as the average heig
(hav) of the pile approaches the critical height (hc). The
values of the exponents for the variations of these quant
(D, t, and j) with hav nearhc have been estimated acc
rately. In fact, the estimated value of the critical height or
location of the catastrophe pointhc , extrapolated separatel
from the growing~precursor! values ofD, t, andj ~for hav
values belowhc), agree quite well with the previous direc
numerical estimates@17# for the same. In the RFB model, w
have studied the breakdown susceptibility (x) and the re-
sponse time (t) required for the bundle to become stab
when an initial load or stresss (,sc) is applied on it. Both
x andt diverge ass approachessc . The growth behavior of
these precursors fors below sc and the possibility of their
extrapolations for estimating the failure pointsc of the net-
work is discussed.

II. PRECURSORS IN THE BTW MODEL

A. Model

Let us consider a BTW model on a square lattice of s
L3L. At each lattice site (i , j ) there is an integer variabl
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hi , j , which represents the height of the sand column at t
site. A unit of height~one sand grain! is added at a randomly
chosen site at each time step and the system evolves in
crete time. The dynamics starts as soon as any site (i , j ) has
got a height equal to the threshold value (hth54): the site
topples, i.e.,hi , j becomes zero there, and the heights of
four neighboring sites increase by one unit

hi , j→hi , j24, hi 61,j→hi 61,j11, and hi , j 61→hi , j 6111.
~1!

If, due to this toppling at site (i , j ), any neighboring site
become unstable~its height reaches the threshold value! they,
in turn, follow the same dynamics. The process continues
all sites become stable@hi , j,hth for all ( i , j )#. When top-
pling occurs at the boundary of the lattice~four nearest
neighbors are not available!, extra heights get off the lattice
and are removed from the system.

With a very slow but steady rate of addition of unit heig
~sand grain! at random sites of the lattice, the avalanches
correlated over longer and longer ranges and the ave
height (hav) of the system grows with time. Gradually, th
correlation length (j) becomes of the order the system si
L. Here, on average, the additional height units start leav
the system as the system approaches toward a critical a
age heighthc(L) and the average height remains stable th
~see Fig. 1!. Also the system becomes critical here as t
distributions of the avalanche sizes and the correspond
lifetimes follow robust power laws@3,4#. In fact, a finite size
scaling fit hc(L)5hc(`)1CL21/n @obtained by settingj
;uhc(L)2hc(`)u2n5L], where C is a constant, withn
.1.0 giveshc[hc(`).2.124 ~see inset of Fig. 1!. Similar
finite size scaling fit withn51.0 gavehc(`).2.124 in ear-
lier large scale simulations@17#.

FIG. 1. The growth of average heighthav @,hc(L)# of the
BTW model against the number of iterations of adding unit heig
(L5100). In the inset, we show the finite size behavior of t
critical heighthc(L), obtained from simulation results for differen
L.
3-2
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FIG. 2. The variations of the precursors withhav @,hc(L)# in the BTW model for different system sizes:L5100~plus!, L5200~cross!,
andL5300 ~open circle!. ~a! For relaxation timet; in the insett20.8 is plotted againsthav . ~b! For the total number of topplingsD; inset
showsD20.5 vs hav plot. ~c! For the correlation lengthj; in the inset,j21.0 is plotted againsthav .
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B. Simulation studies for pulsed perturbation

We have taken random height BTW systems on squ
lattice of different sizes (L5100, 200, and 300). At a fixed
value of L, for any pile configuration at an average heig
hav , when all sites of the system have become stable~dy-
namics have stopped!, a fixed number of height unitshp
54 ~pulse of sand grains! is added at any central point of th
system. Just after this addition, the local dynamics starts
it takes a finite time or iterations to return back to the sta
state@hi , j,4 for all (i , j )# after several toppling events. Fo
each value ofhav(,hc), we take about 105 initial configu-
rations and this response or relaxation time has been n
for each of them. The average relaxation timet is obtained
taking averages over all configurations and is seen to dive
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ashav approaches the critical heighthc @see Fig. 2~a!#. Near
hc ,t follows a power lawt;(hc2hav)2g, whereg>1.2.
The plot of t21/g with hav is a straight line with negative
slope. Extrapolating the straight line and locating the vani
ing point of t21/g one can estimate the critical pointhc

52.136.01 @see inset of Fig. 2~a!# that is very close to the
previous numerical estimatehc>2.124@17#.

Another response parameter, the average size of the d
age (D), i.e., the average number of topplings~after the ad-
dition of pulse! has been measured as follows: the numbe
topplings for each configuration at each value ofhav is noted
and averaged out over the initial configurations~about 105 in
number!. Thus, the averageD for that value ofhav is esti-
mated and this is also seen to diverges ashav→hc @see Fig.
3-3
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2~b!#. Near the critical point, we findD;(hc2hav)2d,
whered>2.0. The plot ofD21/d vs hav gives a straight line
with negative slope@see inset of Fig. 2~b!# that can again be
used to estimatehc (52.126.01) after extrapolating the
straight line up to the vanishing point ofD21/d.

We have also measured the correlation lengthj of the
system during the same experiment. When the pulse is ad
at any central point (i 0 , j 0) of the system at somehav , top-
pling starts there and gradually it moves toward the bou
aries . We have marked the farthest affected site (i f , j f)
~where at least one toppling has occurred due to the pu!
with respect to the central site (i 0 , j 0) where the pulse had
been added. Clearly, the average~over configurations! dis-
tance between the central and the farthest affected
„u( i 0 , j 0)2( i f , j f)u… is a measure of the correlation length
the system at thathav . This correlation lengthj is seen to
diverge ashav→hc @see Fig. 2~c!# following a power lawj
;(hc2hav)2n, wheren>1.0. The plot ofj21/n vs hav @see
inset of Fig. 2~c!# is a straight line. The vanishing point o
j21/n gives an estimate of the critical pointhc and we find
hc52.1360.01. This is also close to the previously es
mated critical value.

III. PRECURSORS IN THE MANNA MODEL

A. Model

We consider now the Abelian Manna model on a squ
lattice of sizeL3L, where the sites can be either empty
occupied with unit height i.e., the height variables can ha
binary stateshi , j51 or hi , j50. A site is chosen randomly
and one height is added at that site. If the site is initia
empty, it gets occupied

hi , j→hi , j11. ~2!

If the chosen site is previously occupied then a toppling
‘‘hard core interaction’’ rejects both the heights from that s

hi , j→hi , j22 ~3!

and each of these two rejected heights stochastically cho
its host among the four neighbors of the toppled site. T
toppling can happen in chains if any chosen neighbor w
previously occupied and thus cascades are created. Afte
system attains stable state~dynamics stopped!, a new site is
chosen randomly and unit height is added to it. Thus,
system evolves in discrete time steps. Here again, the bo
ary is assumed to be completely absorbing so that hei
can leave the system due to the toppling at the boundar

With a slow rate of addition of heights at random site
initially the average height of the system grows with tim
and soon the system approaches toward a critical ave
heighthc , where the average height stabilizes and does
change with further addition of heights~see Fig. 3!. The
critical average heighthc has a finite size dependence and
similar finite size scaling fithc(L)5hc(`)1CL21/n gives
n.1.0 andhc[hc(`).0.716 ~see inset of Fig. 3!. This is
close to an earlier estimatehc.0.71695 @18#, made in a
somewhat different version of the model. The avalanche
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distribution has got power laws similar to the BTW model,
this self-organized critical state athav5hc . However, the
exponents seem to be different@5,6#, compared to those o
BTW model, for this stochastic model.

B. Simulation studies with pulsed perturbation

We have considered Manna model on square lattice
different sizes (L5100, 200, and 300!. At a fixed value ofL,
for any pile configuration at an average heighthav , a fixed
number of heightshp52 has been added at any central po
of the stable pile~for which dynamics had stopped!. Just
after the addition, the local dynamics starts and it take
finite time ~iteration number! to return back to the stable
state@hi , j,2 for all (i , j )# after several toppling events. Fo
each value ofhav(,hc) this response time for each pil
configuration has been noted and the average relaxation
t is obtained from the average over 105 different configura-
tions. Near critical pointt is seen to diverge@see Fig. 4~a!#
ashav approaches the critical heighthc with a power lawt
;(hc2hav)2g, whereg>1.2. The plot oft21/g with hav is
a straight line@see inset of Fig. 4~a!# with negative slope.
Extrapolating the straight line and locating the vanishi
point of t21/g, we have estimated the critical height ashc
50.7260.01, which is very close to the previous numeric
estimatehc>0.716 for this model~see inset of Fig. 3!.

The size of the damage, i.e., the total number of topplin
~after the addition of pulse! has also been measured for th
above cases. The average~over about 105 configurations!
number of topplingsD also diverges as average heighthav
approaches the critical heighthc and near critical pointD
grows asD;(hc2hav)2d, whered>2.0 @see Fig. 4~b!#. The
plot of D21/d vs hav gives a straight line that can be used
estimatehc(50.7260.01) after extrapolation@see inset of
Fig. 4~b!#.

FIG. 3. The growth of average heighthav @,hc(L)# of the
Manna model against the number of iterations of adding u
heights (L5100). In the inset, we show the finite size dependen
of the critical heighthc(L), obtained from simulation results fo
different L.
3-4
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FIG. 4. The variations of the precursors withhav @,hc(L)# in the Manna model for different system sizes:L5100 ~plus!, L5200
~cross!, andL5300 ~open circle!. ~a! For relaxation timet; in the insett20.8 is plotted againsthav . ~b! For the total number of topplings
D; inset showsD20.5 vs hav plot. ~c! For the correlation lengthj; in the inset,j21.0 is plotted againsthav .
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The correlation length (j) of the system has been me
sured following the same procedure as in the BTW mod
described in the previous section. The average~over about
105 configurations! correlation lengthj again diverges@see
Fig. 4~c!# as hav→hc and near critical pointj follows the
power lawj;(hc2hav)2n, wheren>1.0. The plot ofj21/n

vs hav is a straight line with negative slope and the vanish
value of j21/n estimates the critical densityhc50.7260.01
@see inset of Fig. 4~c!# that is again close to the estimate
critical density from direct numerical study.
01611
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IV. PRECURSORS IN THE RANDOM-FIBER-BUNDLE
MODEL

A. The model

We consider a RFB model containingN elastic fibers
clamped at two ends, where the failure stress of the in
vidual fibers are distributed randomly and uniformly with
0 and 1~white distribution!. Global load sharing is assume
and the applied load on the bundle is democratically sha
among the existing intact fibers of the bundle. With the a
3-5
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SRUTARSHI PRADHAN AND BIKAS K. CHAKRABARTI PHYSICAL REVIEW E65 016113
plication of any small loadF (5sN, with s!1) on the
bundle, an initial stresss sets in. At the first step,sN num-
ber of fibers are broken off, leavingNu1(s)5(12s)N
number of unbroken fibers. After this, the applied force
redistributed uniformly among remaining intact fibers a
the stress ~per fiber! is then readjusted to a valu
F/@Nu1(s)#5s/(12s). With this new readjusted stres
some extra fibers for which the strengths are below the ab
readjusted stress fail and the total number of broken fib
increases to a valueN@s/(12s)#, leaving Nu2(s)5@1
2s/(12s)#N unbroken fibers. This, in turn, readjusts th
stress again and induces further failure giving rise to a re
sive relation

un~s!512
s

un21~s!
~4!

for the fractionu of unbroken fibers at thenth and (n21)th
iteration for stresss. This dynamics of successive failur
propagates, therefore, in~discrete! time until Nun21(s)
2Nun(s)<1, or the successive stress readjustments m
so little change that even one fiber cannot be found in
network having strength between the successive readju
value. For an infinite (N→`) fiber bundle, we denote th
fraction of unbroken fibers here by the fixed point val
u* (s). The critical stresssc is determined by thats above
which there is no fixed point andun(s)→0 asn→`. Be-
cause of the above simple recursion relation~4! for u, in the
uniformly distributed RFB model, we can easily analyze t
asymptotic features of its dynamics. The differential form
the above recursion relation~4! can be written as

du

dn
52

~u22u1s!

u
. ~5!

The fixed point value ofu is obtained by settingdu/dn50.
This gives

u* 5
1

2
1~sc2s!1/2, ~6!

wheresc51/4. The other root is neglected here as it is u
stable @see Eq.~7!#. Expanding the Eq.~5! near the fixed
point value~6! of u, we can writeu5u* 1e, and

de

dn
52

e~2u* 21!

u*
.2e@4~sc2s!1/2# ~7!

ass→sc , which gives

un5u* 1const3 exp~2n/t0!, ~8!

where

t05
1

4
~sc2s!21/2. ~9!
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B. Study of the precursors

We have simulated the RFB model with a very slow b
steady increase of initial stresss on a bundle containingN
fibers (N;108). Application of some small initial stresss
(5F/N) triggers the dynamics by breaking off a fractio
(12un) of fibers, and global readjustment of the stre
causes further failures (un11,un). As mentioned before, af
ter a few steps or iterations, whenN@un21(s)2un(s)#<1,
the dynamics stops and the bundle becomes stable. We
this relaxation timet required for the stabilization. For eac
~initial! stresss, we start afresh with the intact bundle an
note the relaxation time for eachs. The observation contin-
ues until we reach the threshold stresssc (51/4), above
which the bundle fails totally~see Fig. 5!. The relaxation
time t is seen to diverge ass→sc following a power law
t;t0;(sc2s)21/2 ~see inset of Fig. 5! that can be ex-
plained easily using Eq.~8!.

Similar studies have been made for the breakdown s
ceptibility x[dm/ds, wherem5N@12u* (s)# is the total
number of fibers broken finally by stresss ~see inset of Fig.
5!. One findsx;(sc2s)21/2, in agreement with the previ
ous observations@11,16#. This can be easily explained from
solution ~6!.

V. SUMMARY AND CONCLUDING REMARKS

In all the three dynamical models of failure we have co
sidered here, we find that long before the occurrence of g
bal failures, the growing correlations in the dynamics of co
stituent elements manifest themselves as various precur
The number of topplingsD, relaxation timet, and the cor-

FIG. 5. Fraction of the unbroken fibersun at different times or
iterationsn in a RFB model with uniform strength distribution, fo
different values of~initial! stress:s50.24~plus!, s50.245~cross!,
s50.248~open circle!, s50.25~open square!, ands50.252~open
triangle!. Note that the last value ofs is greater thansc(51/4), and
the fraction of unbroken fibers goes to zero here. Inset shows
the susceptibilityx ~up triangle! and the relaxation timet ~filled
circle! both diverge ass→sc(51/4).
3-6
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PRECURSORS OF CATASTROPHE IN THE BAK-TANG- . . . PHYSICAL REVIEW E 65 016113
relation lengthj, in both BTW and Manna model, grow an
diverge following power laws as the systems approach t
respective critical points hc from below: D;(hc
2hav)2d, t;(hc2hav)2g, and j;(hc2hav)2n. For two-
dimensional systems, we find numerically hered.2.0, g
.1.2, andn.1.0 for both BTW and Manna model. W
could not thus detect any significant difference in the pow
laws for these precursors. We also could not detect any
nificant finite size effect in these precursors. Though this s
independence of the quantities we studied look quite unn
ral at first sight, there are strong reasons. Basically, we st
the behavior forhav,hc , the precursor behavior, wherej is
necessarily finite. As we add here the tiny pulse at so
central site of a relatively large system, the boundary eff
cannot be really felt because of the smallness ofj compared
to L for most values ofhav . This explains the lack of finite
size effect in our precursor studies@which, of course, is
clearly manifest when we check our model results athav
5hc(L)#. It may also be noted that since forhav nearhc , in
our system,j becomes of the order ofL, at hav5hc(L), our
result suggestsD;L2.0 and t;L1.2. This, in fact, supports
the earlier analytic result forhav5hc(L) for large but finite
systems, as obtained by Dhar@19#. Generally, if we write
D;jdf , we then getdf5d/n.2.0 for the fractal dimension
of the avalanche clusters.

Apart from the previous attempts@15#, an indirect study in
the fixed energy sand-pile~FES! model @18# also indicated
similar power law behavior away from the critical point~es-
sentially for hav above hc). In the BTW-FES model, the
observed exponent values fort and j differ significantly
from those of ours’. However, for the Manna-FES mod
these exponent values are close to our estimates. The
version of the models are somewhat different by construc
and the discrepancies in case of BTW-FES estimates~com-
pared to ours’! seem to be physical in their origin. Due t
lack of stochasticity, BTW model can stabilize in seve
‘‘metastable’’ states~abovehc) and nonuniversality occur
because of different initial conditions. This can also be s
from the difference in the estimate of the critical pointhc in
,

01611
ir

r
g-
e
u-
dy

e
ct

,
ES
n

l

n

the BTW and BTW-FES models; as mentioned before,
such difference in thehc estimate seems to exist for th
Manna and Manna-FES models. This difference in thehc
values for the BTW case might explain the difference in t
exponent values we obtained~for hav,hc) and those ob-
tained for the corresponding FES model~for hav.hc).

For the random-fiber-bundle model, we find that t
breakdown susceptibilityx ~giving the increment in the
number of broken fibers for an infinitesimal increment
load on the network! and the corresponding relaxation timet
~required for the network to stabilize, after successive fa
ures of the fibers!, both diverge as the external load or stre
approaches its global failure pointsc from below: x;(sc
2sav)21/2 andt;(sc2sav)21/2. These results for the RFB
model are, of course, analytically derived here for unifo
distribution of strength of the fibers. It may be mention
here that a similar behavior for the time-to-fracture~for s
abovesc ; diverging with the same exponent 1/2 fort! was
observed in a RFB model, where the fibers relax, un
stress, to the elastic strain through viscous damping@20#.
However, the relaxational dynamics in this visco-elastic R
model is not due to the~self-organizing! stress redistributions
among the surviving fibers and, as such, is quite differen
its origin. In fact, this time-to-failure vanishes in the limit o
zero damping coefficient@20#. However, the similarities in
the behavior in such distinctly different situations also in
cate interesting possibilities.

Knowledge of the precursors and their power laws sho
help estimating precisely the location of the global failure
critical point from the proper extrapolation of the abo
quantities, which are available long before the failure occu
The usefulness of such precursors can hardly be overem
sized.
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